Extensions 1→N→G→Q→1 with N=C2xS32 and Q=C4

Direct product G=NxQ with N=C2xS32 and Q=C4
dρLabelID
S32xC2xC448S3^2xC2xC4288,950

Semidirect products G=N:Q with N=C2xS32 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xS32):C4 = C62.2D4φ: C4/C1C4 ⊆ Out C2xS32244+(C2xS3^2):C4288,386
(C2xS32):2C4 = S3xD6:C4φ: C4/C2C2 ⊆ Out C2xS3248(C2xS3^2):2C4288,568
(C2xS32):3C4 = C62.91C23φ: C4/C2C2 ⊆ Out C2xS3248(C2xS3^2):3C4288,569
(C2xS32):4C4 = C2xS32:C4φ: C4/C2C2 ⊆ Out C2xS3224(C2xS3^2):4C4288,880

Non-split extensions G=N.Q with N=C2xS32 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xS32).C4 = C4.S3wrC2φ: C4/C1C4 ⊆ Out C2xS32244(C2xS3^2).C4288,375
(C2xS32).2C4 = S32:C8φ: C4/C2C2 ⊆ Out C2xS32244(C2xS3^2).2C4288,374
(C2xS32).3C4 = S3xC8:S3φ: C4/C2C2 ⊆ Out C2xS32484(C2xS3^2).3C4288,438
(C2xS32).4C4 = C24:D6φ: C4/C2C2 ⊆ Out C2xS32484(C2xS3^2).4C4288,439
(C2xS32).5C4 = S32xC8φ: trivial image484(C2xS3^2).5C4288,437

׿
x
:
Z
F
o
wr
Q
<